161 research outputs found

    Rock glacier inventory of the western Nyainqêntanglha Range, Tibetan Plateau, supported by InSAR time series and automated classification

    Get PDF
    The western Nyainqêntanglha Range on the Tibetan Plateau reaches an elevation of 7,162 m and is characterized by an extensive periglacial environment under semi-arid climatic conditions. Rock glaciers play an important part of the water budget in high mountain areas and recent studies suggest that they may even act as climate-resistant water storages. In this study we present the first rock glacier inventory of this region containing 1,433 rock glaciers over an area of 4,622 km. To create the most reliable inventory we combine manually created rock glacier outlines with an automated classification approach. The manual outlines were generated based on surface elevation data, optical satellite imagery and a surface velocity estimation. This estimation was generated via InSAR time series analysis with Sentinel-1 data from 2016 to 2019. Our pixel-based automated classification was able to correctly identify 87.8% of all rock glaciers in the study area at a true positive rate of 69.5%. In total, 65.9% of rock glaciers are classified as transitional with surface velocities of 1–10 cm/yr. In total, 18.5% are classified as active with higher velocities of up to 87 cm/yr. The southern windward side of the mountain range contains more numerous and more active rock glaciers. We attribute this to higher moisture availability supplied by the Indian Monsoon

    Aquatic and terrestrial proxy evidence for Middle Pleistocene palaeolake and lake‐shore development at two Lower Palaeolithic sites of Schöningen, Germany

    Get PDF
    The archaeological sites in the open‐cast mine of Schöningen, Germany, represent outstanding archives for understanding Middle Pleistocene interglacial–glacial transitions and human adaption. Aquatic microfossil and pollen assemblages from the ‘Reinsdorf sequence’, likely correlated to Marine Isotope Stage 9, document environmental changes from a thermal maximum to succeeding glacial conditions recorded in two sequences of excavation sites 12 II and 13 II. Multi‐proxy analyses enable detailed reconstruction of lake‐shore and landscape developments despite variable microfossil preservation in changing carbonate‐ and organic‐rich deposits. Rich aquatic vegetation with abundant charophytes suggests repeated phases with water depths of 0.5–2 m at site 13 II, while even greater temporary depths are deduced for 12 II DB. Mesorheophilic and mesotitanophilic ostracod species indicate stream inflows with medium–low calcium contents of >18 mg Ca L –1 originating from nearby springs. Diatoms point to meso‐eutrophic conditions and an alkaline pH of the lake water. Interglacial conditions with thermophile forests but no aquatic microfossils preserved, suggesting a dry or only temporarily flooded site, mark the beginning of the sequence. Continuous presence of aquatic organisms and overall dominance of small tychoplanktonic diatoms during a subsequent cool steppe phase provide evidence for increased water depths and unstable habitats characterized by erosion and probably prolonged periods of lake ice cover. During the succeeding boreal forest‐steppe phase, surface runoff into the productive, shallow lake decreased due to a more extensive vegetation cover. Concurrently, intensified groundwater input in contact with the nearby salt wall caused elevated salinities. Following a lake level drop, stream inflows and lake levels increased again towards the end of the Reinsdorf sequence and promoted development of a diverse fauna and flora at the lake shore; thereby maintaining an attractive living and hunting environment for early humans during a phase of generally cooler temperatures and landscape instability at the transition into a glacial period

    Eucypris fontana (Graf, 1931) (Crustacea, Ostracoda) in permanent environments of Patagonia Argentina: a geometric morphometric approach

    Get PDF
    Ostracods are microcrustaceans with a calcareous carapace, very useful as paleoenvironmental indicators. Eucypris fontana (Graf, 1931) is a non-marine ostracod species, distributed in southern Neotropics, commonly found in living bisexual populations as well as in quaternary sequences in Patagonia. Geometry morphometric analysis offers efficient and powerful techniques to quantify, describe and analyze shape and size variations. In this study, phenotypic changes in the carapace (size and shape) of E. fontana were analyzed using geometric morphometric methods. One hundred and two valves, including males and females from surface sediments of six permanent water bodies located in Patagonia, Argentina, were analyzed. Male and female valves are spread in the morphospace and sexual dimorphism in size and shape were no perceived. Valve size (centroid size) differed between environments; larger individual were correlated with higher Mg2+, Ca2+, K+ concentrations and temperature and lower pH (y9.1) of the host waters, whereas smaller specimens were associated with the opposite environmental extreme. The principal component analysis performed with Procrustes coordinates (shape) indicated a morphological gradient between elongated and rounded valves; major changes occurring on the dorsal margin, calcified inner lamella and in the position of the adductor muscles scars. Rounded carapaces were related whit higher Ca2+ and Mg2+ concentration and lower pH (y8.6) environments, whereas elongated valves were associated with the opposite environmental extreme. These results highlight the importance of morphometric studies of E. fontana in ecological research and their potential use in paleoenvironmental studies in Patagonia and other regions where this taxon is found.Fil: Ramos, Lorena Yésica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Alperín, Marta. Universidad Nacional de la Plata. Facultad de Cs.naturales y Museo. Catedra de Estadistica; ArgentinaFil: Perez, Alejandra Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Fotobiologia; ArgentinaFil: Coviaga, Corina Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Schwalb, Antje. Technische Universität Braunschweig; AlemaniaFil: Cusminsky, Gabriela Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación En Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue; Argentin

    The Lake CHAd Deep DRILLing project (CHADRILL) – targeting ~10 million years of environmental and climate change in Africa

    Get PDF
    At present, Lake Chad ( ∼ 13◦0 N, ∼ 14◦ E) is a shallow freshwater lake located in the Sahel/Sahara region of central northern Africa. The lake is primarily fed by the Chari–Logone river system draining a ∼ 600 000 km2 watershed in tropical Africa. Discharge is strongly controlled by the annual passage of the intertropical convergence zone (ITCZ) and monsoon circulation leading to a peak in rainfall during boreal summer. During recent decades, a large number of studies have been carried out in the Lake Chad Basin (LCB). They have mostly focused on a patchwork of exposed lake sediments and outcrops once inhabited by early hominids. A dataset generated from a 673 m long geotechnical borehole drilled in 1973, along with outcrop and seismic reflection studies, reveal several hundred metres of Miocene–Pleistocene lacustrine deposits. CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions such as high CO2 and absence of Northern Hemisphere ice sheets. These investigations will also help unravel both the age and the origin of the lake and its current desert surrounding. The LCB is very rich in early hominid fossils (Australopithecus bahrelghazali; Sahelanthropus tchadensis) of Late Miocene age. Thus, retrieving a sediment core from this basin will provide the most continuous climatic and environmental record with which to compare hominid migrations across northern Africa and has major implications for understanding human evolution. Furthermore, due to its dramatic and episodically changing water levels and associated depositional modes, Lake Chad’s sediments resemble maybe an analogue for lake systems that were once present on Mars. Consequently, the study of the subsurface biosphere contained in these sediments has the potential to shed light on microbial biodiversity present in this type of depositional environment. We propose to drill a total of ∼ 1800 m of poorly to semi-consolidated lacustrine, fluvial, and eolian sediments down to bedrock at a single on-shore site close to the shoreline of present-day Lake Chad. We propose to locate our drilling operations on-shore close to the site where the geotechnical Bol borehole (13◦280 N, 14◦440 E) was drilled in 1973. This is for two main reasons: (1) nowhere else in the Chad Basin do we have such detailed information about the lithologies to be drilled; and (2) the Bol site is close to the depocentre of the Chad Basin and therefore likely to provide the stratigraphically most continuous sequence

    Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes

    Get PDF
    We evaluated how ranges of four endemic and non-endemic aquatic ostracode species changed in response to long-term (glacial–interglacial cycles) and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We employed two complementary approaches, fossil records and species distribution models (SDMs). Fossil assemblages were obtained from sediment cores PI-1, PI-2, PI-6 and Petén-Itzá 22-VIII-99 from the Petén Itzá Scientific Drilling Project, Lake Petén Itzá, Guatemala. To obtain a spatially resolved pattern of (past) species distribution, a downscaling cascade is employed. SDMs were reconstructed for the last interglacial (∼120 ka), the last glacial maximum (∼22 ka) and the middle Holocene (∼6 ka). During glacial and interglacial cycles and marine isotope stages (MISs), modelled paleo-distributions and paleo-records show the nearly continuous presence of endemic and non-endemic species in the region, suggesting negligible effects of long-term climate variations on aquatic niche stability. During periods of abrupt ecological disruption such as Heinrich Stadial 1 (HS1), endemic species were resilient, remaining within their current areas of distribution. Non-endemic species, however, proved to be more sensitive. Modelled paleo-distributions suggest that the geographic range of non-endemic species changed, moving southward into Central America. Due to the uncertainties involved in the downscaling from the global numerical to the highly resolved regional geospatial statistical modelling, results can be seen as a benchmark for future studies using similar approaches. Given relatively moderate temperature decreases in Lake Petén Itzá waters (∼5 ∘C) and the persistence of some aquatic ecosystems even during periods of severe drying in HS1, our data suggest (1) the existence of micro-refugia and/or (2) continuous interaction between central metapopulations and surrounding populations, enabling aquatic taxa to survive climate fluctuations in the northern Neotropical region

    Characterizing ecoregions in Argentinian patagonia using extant continental ostracods

    Get PDF
    In order to characterize Patagonian (Argentina) ecoregions using non-marine ostracods, their associations in 69 environments were assessed. Twenty eight taxa were recorded, including 12 endemic of the Neotropical region. Our results indicate that Patagonian ostracods are mainly influenced by electrical conductivity (EC), altitude, pH, and temperature; and shows a correlation with Argentinian ecoregions. Assemblage I is composed of sites located at high altitude in the Andean Patagonian forest ecoregion. Host waters have low temperature, EC and pH, and support as representative species Cypris pubera, Eucypris virens, Bradleystrandesia fuscata, Tonacypris lutaria and Amphicypris nobilis. Assemblage II, related to mid-altitude environments in the Patagonian Steppe ecoregion, thrived in waters with moderate to high EC, and alkaline pH values. Dominant species includes Limnocythere rionegroensis, L. patagonica, E. virgata, Riocypris whatleyi, Riocypris sarsi, Newnhamia patagonica, Kapcypridopsis megapodus, Ilyocypris ramirezi and Penthesinelula incae. Assemblage III inhabited environments within Monte and Espinal ecoregions, situated in the eastern part of the study area at low altitude, EC moderate and temperate waters, supporting Heterocypris hyalinus, Amphicypris argentinensis, Sarscypridopsis aculeata, Cypridopsis vidua, Herpetocypris intermedia and Chlamidotheca incisa. Our results indicates that Argentinian Patagonia hosts a diverse ostracod fauna and highlights their capacity as proxies in ecological and palaeoenvironmental studies.Fil: Cusminsky, Gabriela Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Coviaga, Corina Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ramos, Lorena Yésica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Perez, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Schwalb, Antje. Technische Universität Braunschweig; AlemaniaFil: Markgraf, Vera. University of Colorado; Estados UnidosFil: Ariztegui, Daniel. Universidad de Ginebra; SuizaFil: Viehberg, Finn. Universitat zu Köln; Alemania. Universität Greifswald; AlemaniaFil: Alperin, Marta Ines. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentin

    Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics

    Get PDF
    Geodiversity is recognized as one of the most important drivers of ecosystem characteristics and biodiversity globally. However, in the northern Neotropics, the contribution of highly diverse landscapes, environmental conditions, and geological history in structuring large-scale patterns of aquatic environments and aquatic species associations remains poorly understood. We evaluated the relationships among geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. A cluster analysis (CA), based on geological, geochemical, mineralogical, and water-column physical and chemical characteristics of 76 aquatic ecosystems (karst, volcanic, tectonic) revealed two main limnological regions: (1) karst plateaus of the Yucatán Peninsula and northern Guatemala, and (2) volcanic terrains of the Guatemalan highlands, mid-elevation sites in El Salvador and Honduras, and the Nicaraguan lowlands. In addition, seven subregions were recognized, demonstrating a high heterogeneity of aquatic environments. Principal component analysis (PCA) identified water chemistry (ionic composition) and mineralogy as most influential for aquatic ecosystem classification. Multi-parametric analyses, based on biological data, revealed that ostracode species associations represent disjunct faunas. Five species associations, distributed according to limnological regions, were recognized. Structural equation modeling (SEM) revealed that geodiversity explains limnological patterns of the study area. Limnology further explained species composition, but not species richness. The influence of conductivity and elevation were individually evaluated in SEM and were statistically significant for ostracode species composition, though not for species richness. We conclude that geodiversity has a central influence on the limnological conditions of aquatic systems, which in turn influence ostracode species composition in lakes of the northern Neotropical region

    Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics

    Get PDF
    Geodiversity is recognized as one of the most important drivers of ecosystem characteristics and biodiversity globally. However, in the northern Neotropics, the contribution of highly diverse landscapes, environmental conditions, and geological history in structuring large-scale patterns of aquatic environments and aquatic species associations remains poorly understood. We evaluated the relationships among geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. A cluster analysis (CA), based on geological, geochemical, mineralogical, and water-column physical and chemical characteristics of 76 aquatic ecosystems (karst, volcanic, tectonic) revealed two main limnological regions: (1) karst plateaus of the Yucatán Peninsula and northern Guatemala, and (2) volcanic terrains of the Guatemalan highlands, mid-elevation sites in El Salvador and Honduras, and the Nicaraguan lowlands. In addition, seven subregions were recognized, demonstrating a high heterogeneity of aquatic environments. Principal component analysis (PCA) identified water chemistry (ionic composition) and mineralogy as most influential for aquatic ecosystem classification. Multi-parametric analyses, based on biological data, revealed that ostracode species associations represent disjunct faunas. Five species associations, distributed according to limnological regions, were recognized. Structural equation modeling (SEM) revealed that geodiversity explains limnological patterns of the study area. Limnology further explained species composition, but not species richness. The influence of conductivity and elevation were individually evaluated in SEM and were statistically significant for ostracode species composition, though not for species richness. We conclude that geodiversity has a central influence on the limnological conditions of aquatic systems, which in turn influence ostracode species composition in lakes of the northern Neotropical region.</p

    Distribution and ecology of freshwater ostracods from northern patagonia: An approach

    Get PDF
    There are only a few studies about the ostracod faunal assemblages and their environmental requirements from Patagonia (e.g. CUSMINSKY et al., 2011; RAMÓN MERCAU et al., 2012). Here we present the results of a survey of thirteen water bodies (streams, springs, temporary habitats) in Northern Patagonia (39° 52’ – 41°50’ S; 70°36’ – 71°27’ W) and their comparison with those of previous studies in the earstern Patagonia. The goal of this research is to enhance our understanding of the regional Patagonian ostracoda fauna and evaluate the relationship between ostracod species and physical and chemical (depth, temperature, pH, conductivity, dissolved oxygen concentration, seston and main ions) parameters of host waters along a W-E precipitation gradient (ranging from 1200 to 160mm/annually). To date, seven species were identified: Amphicypris nobilis Sars 1901, Bradleystrandesia fuscata (Jurine, 1820), Cypridopsis vidua (O. F. Müller, 1776), Cypris pubera O. F. Müller 1776, Eucypris virens (Jurine, 1820), Heterocypris incongruens (Ramdohr, 1808) and Tonnacypris lutaria (Koch, 1838). The more frequent species were T. lutaria and E. virens, while A. nobilis and C. vidua were only found in one site. Males of A. nobilis were found while the other species were represented only by females. The environment of this fauna is related to low conductivity and salinity in the water. Conversely, previous studies in the easternmost area of Patagonia have shown different fauna such us Penthesinelula incae (Delachaux, 1928), Potamocypris smaradigma (Vávra, 1891), Ilyocypris ramirezi Cusminsky and Whatley, 1996, Limnocythere patagonica Cusminsky and Whatley, 1996, Eucypris fontana (Graf, 1931), Kapcypridopsis megapodus Cusminsky et al. 2005 and Limnocythere rionegroensis, Cusminsky and Whatley, 1996 living in comparatively higher conductivity (CUSMINSKY et al., 2011). The latter suggest that the decreasing precipitation trend towards eastern Patagonia is reflected in the distribution of different ostracod fauna association. On the other hand, new distributions of cosmopolitan species are present, spreading out their geographical distribution to the Neotropical region (MARTENS et al., 2008). Some of the species such us C. pubera, E. virens and B. fuscata have been also described in the Neartic region, suggesting that birds could be responsible to their dispersion. However, the mode of dispersion of T. lutaria in this region is still an open question.Fil: Coviaga, Corina Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Cusminsky, Gabriela Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Perez, Alejandra Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Diaz, Analia Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Schwalb, Antje. Technische Universitat Carolo Wilhelmina Zu Braunschweig. Iinstitut fur Geosysteme und Bioindikation.; AlemaniaFil: Alperin, Marta Ines. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Cátedra de Estadística; ArgentinaFil: Viehberg, Finn. University of Cologne.Institute of Geology and Mineralogy; AlemaniaFil: Whatley, Robin. University Aberystwyth.Institute of Earth Studies.Department of Geology; Reino UnidoFil: Ariztegui, Daniel. University of Geneva.Department of Earth Sciences; SuizaFil: Markgraf, Vera. University of Colorado; Estados Unidos. Northern Arizona University.; Estados Unido
    corecore